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Abstract

Building agents capable of understanding language instructions is critical to effec-
tive and robust human-AI collaboration. Recent work focuses on training these
agents via reinforcement learning in environments with synthetic language; how-
ever, instructions often define long-horizon, sparse-reward tasks, and learning
policies requires many episodes of experience. We introduce ELLA: Exploration
through Learned Language Abstraction, a reward shaping approach geared towards
boosting sample efficiency in sparse reward environments by correlating high-level
instructions with simpler low-level constituents. ELLA has two key elements: 1) A
termination classifier that identifies when agents complete low-level instructions,
and 2) A relevance classifier that correlates low-level instructions with success on
high-level tasks. We learn the termination classifier offline from pairs of instruc-
tions and terminal states. Notably, in departure from prior work in language and
abstraction, we learn the relevance classifier online, without relying on an explicit
decomposition of high-level instructions to low-level instructions. On a suite of
complex BabyAI [11] environments with varying instruction complexities and
reward sparsity, ELLA shows gains in sample efficiency relative to language-based
shaping and traditional RL methods.

1 Introduction

A long-standing goal for robotics and embodied agents is to build systems that can perform tasks
specified in natural language [1, 8, 21, 26, 39, 42, 43]. Central to the promise of language is its ability
to cleanly specify complex, multi-step instructions. Instructions like make a cup of coffee define
long-horizon tasks as abstractions over lower-level components—simple instructions like pick up a
cup or turn on the coffee maker. Leveraging these abstractions can help amplify the sample efficiency
and generalization potential of our autonomous agents.

One way to do this is through the lens of instruction following, which can be framed in several ways.
One common framing—and the one we use in this work—is via reinforcement learning (RL): an
agent is given a start state, a language instruction, and a corresponding reward function to optimize
that usually denotes termination [21, 31]. While RL can be a useful framing, such approaches are
often not sample efficient [11, 21]. Especially in the case of complex, highly compositional language
instructions, RL agents can fail to make progress quickly—or at all. There are several reasons for
poor performance in these settings; paramount is that in many environments, these instructions are
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Figure 1: In this example, an expert provides examples of when low-level go to tasks are and are not
solved, and the agent trains a termination classifier. During policy learning, the agent rewards itself
for completing go to subtasks—specifically, those which are relevant to its current high-level task. It
stores successful experiences to learn to correlate low-level go to tasks with high-level put next tasks.

tied to sparse reward functions that only provide signal upon completion of the high-level task, which
drastically hurts sample efficiency. For example, seeing reward for make a cup of coffee would require
already having turned on the coffee maker, which could itself be a difficult task. Such “bottleneck"
states, which have zero intermediate reward, complicate exploration and learning [30, 40].

Our goal is to improve sample efficiency for instruction following agents operating in sparse reward
settings. Driving our approach is using the principle of abstraction—the fact that complex instructions
entail simpler ones—to guide exploration. Consider our coffee example; we would like to guide the
agent to explore in a structured fashion, learning low-level behaviors first (pick up a cup, turn on the
coffee machine) and building up to solving the high-level task. To do this, we frame our problem via
reward shaping, the general technique of supplying auxiliary rewards to guide learning [32, 36].

Our approach, Exploration through Learned Language Abstraction (ELLA) provides intermediate
rewards to an agent for completing relevant low-level behaviors as it tries to solve a complex,
sparse reward task. Notably, our approach 1) learns to identify the low-level primitives helpful for
a high-level language task online, and 2) does not require a strict hierarchical decomposition of
language instructions to these primitives. Rather, ELLA uses low-level instructions to support agents
performing complex tasks, bonusing agents as they complete relevant behaviors. In contrast to prior
work [3, 24] that assumes strict contracts over instruction decomposition, our contract is simple
and general. This prior work assumes each high-level task is comprised of exact series of low-level
policies—an assumption that is only possible when the full set of primitives is known ahead of time,
and fails when new actions or further exploration are necessary.

In order to bonus agents as they complete relevant subtasks, ELLA assumes access to a set of low-
level instructions and corresponding termination states, similar to the data assumed in prior work [6].
While collecting such data for complex tasks may require time and effort, annotations for low-level
instructions are more tractable. Humans can quickly annotate instructions like pick up the cup or
open the cupboard, or even build tools for generating such examples. This is increasingly apparent
in prior work [5, 23, 26, 44]; low-level instructions are used to simplify the problem of interpreting
high-level instructions, through a variety of mechanisms. In our case, these low-level instructions
provide the basis for reward shaping.

We empirically validate our abstraction-based reward shaping framework on a series of tasks via the
BabyAI platform [11]. We compare against a standard RL baseline as well as to a strong language-
based reward shaping approach [17], and find that our method leads to substantial gains in sample
efficiency across a variety of instruction following tasks.
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2 Related Work

We build on a large body of work that studies language in the context of reinforcement learning (RL)
[28] with a focus on methods for instruction following, leveraging hierarchy, and reward shaping.

Instruction Following. Instruction following focuses on the automated execution of language
commands in simulated or real environments [1, 16, 27, 42, 45]. We focus on the RL setting [11, 31],
where agents learn language-conditioned policies in a Markov decision process (MDP).

Even simple instruction following problems are difficult to learn [29], which has made 2D envi-
ronments important test-beds for new learning methods [3, 11, 47]. Such environments, which are
procedurally-generated, are useful because they decouple exploration from the problem of perception,
and demand policies that do not overfit to narrow regions in the state space [10, 13].

We use BabyAI [11] as the platform for our tasks. BabyAI’s language is synthetic, similar to prior
work examining RL for instruction following at scale [21, 22]. These environments are scalable
starting points for new instruction following approaches, since deep RL remains sample-inefficient
but has the potential to flexibly deal with complex environments [22]. Simplified environments also
make investigating concepts such as language abstraction possible, and these concepts can generalize
to real human-AI interactions [26, 44]. We describe our experimental setup in Section 5.

Hierarchical and Language-Structured Policies. A large body of work in hierarchical RL studies
temporal abstractions of MDPs, where policies are designed or learned at multiple levels of hierarchy
[41]. Recent works have made the connection to language: for example, high-level policies can act
over the space of low-level instructions [24]. Other hierarchical language techniques include learning
models that predict symbolic representations of reward functions at different granularities [5, 25], and
compositional approaches like policy sketches [3] and modular control [15], methods that explicitly
decompose high-level instructions into sequences of predefined low-level instructions, or subtasks.

In this work, we use language hierarchically, but without the strict decomposition assumption made
by prior work: we do not assume high-level tasks are composed of an exact series of low-level tasks.
Without this assumption, it is infeasible to use explicitly modular approaches [3, 5, 15]. A further
distinguishing factor of our method relative to prior work is that we do not require high-level task
decompositions be provided a priori. We expand on these features in Section 3.

Language and Reward Shaping. Reward shaping is a general technique for supplying auxiliary
rewards in order to guide an agent’s learning process. Certain types of reward transformations, such as
potential-based rewards, do not change the optimal policy but can impact sample efficiency [32]. Prior
work has applied reward shaping to language-based instruction following settings. Goyal et al. [17]
train a classification network on (trajectory, language) data to predict if a trajectory (parameterized
by action frequencies) matches a language description, and evaluate the network at every time step
to form a potential-based reward shaping function. They evaluate their method on Montezuma’s
Revenge, which is a complex task, but with a static, deterministic layout that does not speak to the
generalization potential of such methods. Relatedly, Waytowich et al. [46] use a narration-based
approach, where high-level tasks are explicitly broken down into low-level tasks as narrations. Finally,
Misra et al. [31] use a shaping function based on spatial distance to goals specified in language, but
require the location of the goal to be known. In this work, we use the same high level principle—
language can yield useful intermediate rewards—but do not make the restrictive assumptions of prior
work about the environment or the way tasks are structured.

Other Forms of Guidance. Several other methods exist for improving the sample efficiency of
RL in sparse reward settings. These methods reward an aspect of exploration that is orthogonal to
our approach, and we see potential for combining these methods with ours. One popular technique
is hindsight experience replay (HER), in which failed trajectories are stored in a replay buffer
and relabeled with new goals that get nonzero reward [4]. Jiang et al. [24] extend the method to
hierarchical language settings, assuming a mapping from states to corresponding goals. Cideron
et al. [12] learn this mapping alongside policy training using the environment reward as supervision.
Another technique for improving sample efficiency is through intrinsic motivation [9, 33, 35, 37].
In general, these methods instantiate reward shaping to incentivize accessing novel, diverse, or
unpredictable parts of the state space via intrinsic rewards, and they can be extended to language-
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conditioned settings as well [14]. In Appendix D, we evaluate the performance of RIDE [35], an
intrinsic motivation method that rewards actions that cause significant changes to the state, and
discuss potential synergies with ELLA.

3 Problem Statement

We consider an augmented MDPM defined by the tuple (S,A, T,R,G, γ) where S,A, T , and γ
are standard. A consists of primitive actions—in BabyAI, these are navigation primitives (forward,
pick up, etc.). G is a set of language instructions, from which a high-level task instruction g is
drawn, and R : S × A × G → [0, 1] represents the state-action reward given some g. Via RL, we
wish to find some policy π : S × G → A that maximizes the expected discounted return.

We specifically consider cases where M has a finite horizon H and R is sparse with respect to
goal-completion, making exploration difficult. Our aim is to construct a reward transformation
R → R′ which is policy invariant with respect to the original MDP (i.e. an optimal policy for
M′ = (S,A, T,R′, g, γ) is also optimal inM and vice versa), while providing the agent strong
signal conducive to sample-efficient exploration.

We assume access to a set of low-level instructions Gℓ such that every g ∈ G is supported by some
gℓ ∈ Gℓ. Note that we do not require that high-level tasks fully factorize into low-level tasks. To
clarify the distinction, say that Gℓ consists of go to “x” instructions: go to the red ball, go to the
blue ball, etc. The instruction go to the red ball and then go to the blue ball can be fully factorized
into low-level tasks in Gℓ. On the other hand, the instruction put the red ball next to the green key is
supported by go to the red ball, but it also requires picking up and putting down the ball—actions not
covered by Gℓ. Our framing permits exploration using a mixture of low-level instructions as well as
primitive actions in A (such as pick up and put down).

We assume that examples of the corresponding termination states of instructions in Gℓ are easy to
obtain—via a human expert or automation. This is reasonable for simple low-level tasks like the go
to tasks in Figure 1. However, it is less feasible in domains where data collection is costly and the
environment is hard to simulate; we address this further in Section 7.

The environments in our experiments are partially observable, so we use recurrent networks that
ingest sequences of observations (o1, o2, ..., ot) rather than a single state st [20]. Though our notation
describes the fully observable setting, the extension to the partially observable case is straightforward.

4 ELLA

We present ELLA, our reward shaping framework for guiding exploration using learned language
abstractions.1 Figure 1 provides a graphical overview of ELLA. Our approach rewards an agent
when it has completed low-level tasks that support a given high level task. To do this, it predicts 1)
when a low-level task terminates and 2) when a low-level task is relevant. Section 4.1 describes our
low-level termination classifier. Section 4.2 describes our relevance classifier, and how we learn it
online during RL. Finally, Section 4.3 details our reward shaping scheme, which bonuses an agent for
exploring states that satisfy relevant low-level tasks.

4.1 Learning the Low-Level Termination Classifier

We train a binary termination classifier hϕ : S × Gℓ → {0, 1} parameterized by ϕ to predict if a
low-level task gℓ ∈ Gℓ terminates in a particular state s ∈ S. We assume access to Gℓ as well as
positive and negative examples of low-level task termination states. This dataset could be annotated
by a human or created automatically. While providing demonstrations of high-level tasks (e.g., make
a cup of coffee) across varied environments is costly, it is more feasible to do so for low-level tasks
(e.g., pick up the mug) which are shorter, simpler, and more generalizable. To represent hϕ, we adapt
the architecture from [11] which merges state and language representations using feature-wise linear
modulation (FiLM) [34].

1Our code is available at https://github.com/Stanford-ILIAD/ELLA.
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Algorithm 1 Reward Shaping via ELLA

Input: Initial policy parameters θ0, relevance
classifier parameters ρ0, update rate n, low-
level bonus λ, and RL optimizer OPTIMIZE
Initialize D ← {(g : Gℓ) for all g in G}
for k = 0, 1, . . . do

Collect trajectories Dk using πθ
k.

for τ ∈ Dk do
Set N ← length of τ
Set (r′1:N , Ŝ)← SHAPE(τ )
if U(τ) > 0 then

Set r′N ← NEUTRALIZE(r′1:N )
Set D[g]← UPDATEDECOMP(D, Ŝ)

Update θk+1 ← OPTIMIZE(r′1:N ).
if k is a multiple of n then

Update ρk+1 by optimizing cross entropy
loss on a balanced sample from D.

function SHAPE(τ )
Set Ŝ← ∅
for gℓ ∈ Gℓ do

for g, (st, rt) ∈ τ do
if hϕ(st, gℓ) = 1 and gℓ ̸∈ Ŝ then

Update Ŝ← Ŝ ∪ {gℓ}
Set r′t ← rt + λ · I[fρ(g, gℓ) = 1]

return (r′1:N , Ŝ)

function NEUTRALIZE(r′1:N )
Set TS ← {t | 1 ≤ t ≤ N, r′t > 0}
return r′N −

∑︁
t∈TS

γt−Nλ

function UPDATEDECOMP(D, Ŝ)
Set S← D[g]
return S ∩ Ŝ (or Ŝ if S ∩ Ŝ = ∅)

4.2 Learning the Relevance Classifier

Our reward shaping approach also needs to evaluate relevance of a low-level instruction in addition
to being able to classify termination. The relevance mapping from G to P(Gℓ) (the power set of Gℓ)
is initially unknown to the agent. We refer to the output of this mapping as a decomposition of g, but
note again that it need not be a strict decomposition. We propose that this mapping is represented
by a separate binary relevance classifier fρ : G × Gℓ → {0, 1} learned during policy training from a
dataset of decompositionsD collected online. The output of fρ indicates whether a particular gℓ ∈ Gℓ
is relevant to some g ∈ G. We use a Siamese network to represent fρ.

Training the Relevance Classifier. SupposeD already contains key-value pairs (g,S) where g ∈ G
and S ∈ P(Gℓ). Each S is an estimate of the oracle decomposition S̄ of a particular g. For every g in
D, we enumerate negative examples of relevant subtasks from Gℓ \ S and accordingly oversample
positive examples from S; we then optimize a cross entropy objective on this balanced dataset.

Collecting Relevance Data Online. We describe any trajectory that solves the high-level task as
successful, regardless of whether they do so optimally, and any other trajectories as unsuccessful.
For every successful trajectory of some g we encounter during RL training, we record the low-
level instructions which terminated. That is, we relabel the steps in the trajectory and use hϕ to
determine which low-level instructions were completed (if any), yielding an estimate Ŝ of the true
decomposition S̄. If D already contains an estimate S for g, we simply deduplicate the multiple
decomposition estimates by intersecting S and Ŝ. As the agent completes more successful trajectories,
decompositions in D are more likely to get revisited.

Intuition for Deduplication. Intuitively, this method for deduplication denoises run-specific
experiences, and distills the estimate S in D for a given g to only those gℓ that are shared among
multiple successful runs of g. Consider g = put the red ball next to the blue box; successful runs early
in training could highlight go to the red ball along with irrelevant go to low-level instructions. As πθ

improves, so do the decomposition estimates. Later runs may highlight only go to the red ball. Taking
the intersection would yield only go to the red ball as our final estimate S. This approach also helps
to deal with false positives of hϕ by effectively boosting the estimate across runs. If deduplication
produces a null intersection, which may happen due to false negatives of hϕ, we err on the side of
using the latest estimate. If we assume hϕ has perfect accuracy, the intersection will never be null,
and the continual intersections will reflect the set of completed gℓ common to all successful runs of g.
For an initialization conducive to deduplication and that provides πθ strong incentive to complete
low-level tasks from the beginning of training, we initialize fρ to predict that S = Gℓ for all g.
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Low-Level Task Example
GOTO-ROOM (G1) go to a purple ball
GOTO-MAZE (G2) go to a purple ball
OPEN-MAZE (O2) open the red door
PICK-MAZE (P2) pick up the blue box

High-Level Task Example(s) Gℓ
PUTNEXT-ROOM put the purple ball next to the blue key G1
PUTNEXT-MAZE put the purple ball next to the blue key G2
UNLOCK-MAZE open the green door P2
OPEN&PICK-MAZE open the red door and pick up the blue box O2, G2
COMBO-MAZE put next, open, pick G2
SEQUENCE-MAZE pick up a purple key and then put the grey box next

to the red box
G2

Table 1: Sample low- and high-level instructions.

4.3 Shaping Rewards

We now describe the shaped reward function R′ which relies on hϕ and fρ. R′ provides a bonus λ
whenever a relevant low-level task terminates. We do this by relabeling the current (st, at, rt, st+1)
with every gℓ and using hϕ to predict low-level task termination, and fρ to predict relevance.

Critically, we do not want the shaping transformation from R → R′ to be vulnerable to the agent
getting “distracted” by the shaped reward (reward hacking), as in Randløv and Alstrøm [36] where
an agent learns to ride a bicycle in a circle around a goal repeatedly accruing reward. To this end, we
cap the bonus per low-level instruction per episode to λ to prevent cycles. More generally, we want
R′ to be policy invariant with respect toM: it should not introduce any new optimal policies, and it
should retain all the optimal policies fromM. Policy invariance is a useful property [32]: we do not
want to reward a suboptimal trajectory (such as one that repeatedly completes a low-level instruction)
more than an optimal trajectory inM, and policy invariance guarantees this.

We establish two desiderata for R′ [7]: (a) The reward transformation should be policy invariant
with respect toM for states from which the task is solvable, and (b) R′ should improve sample
efficiency by encouraging subtask-based exploration. To satisfy our desiderata, we choose R′ such
that successful trajectories get the same return underM andM′, and that unsuccessful trajectories
get lower returns underM′ than trajectories optimal inM. We will describe and intuitively justify
each of these choices with respect to (a) and (b).

Neutralization in Successful Trajectories. We neutralize shaped reward in successful trajectories—
that is, subtract the shaped reward at the final time step—so that successful trajectories gets the same
return under both R′ and R.

More specifically, let U(τ) :=
∑︁N

t=1 γ
tR(st, at), the cumulative discounted return under R of a

successful trajectory τ . Let U ′(τ) be likewise defined for R′. If τ has N steps, the sparse reward
under R is U(τ) = γNrN . Under R′, if TS is the set of the time steps at which a λ bonus is applied,
we set r′N to rN −

∑︁
t∈TS

γt−Nλ. This is the value required to neutralize the intermediate rewards,
such that U ′(τ) = γNrN = U(τ). (Note that we cap the bonus per time step to λ—if multiple
low-level language instructions terminate at a single state, only a bonus of λ is applied.)

Theoretically, we could apply neutralization to all trajectories, not just successful ones, and we would
satisfy property (a) [19]. However, this is harmful to property (b), because unsuccessful trajectories
would result in zero return: a negative reward at the last time step would negate the subtask rewards,
potentially hurting boosts in sample efficiency.
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Tuning λ to Limit Return in Unsuccessful Trajectories. Any successful trajectory gets the same
return under R′ as under R because of neutralization. By choosing λ carefully, we can additionally
satisfy the property that any unsuccessful trajectory gets a lower return under R′ than any trajectory
selected by an optimal policy π∗

M inM.

To achieve this, we need λ to be sufficiently small. Assume that a trajectory τ selected by π∗
M takes

no longer than M time steps to solve any g. In the worst case, M = H , and U(τ) would be γHrH .
If TS is the set of the time steps at which R′ provides λ bonuses, U ′(τ) would be λ

∑︁
t∈TS

γt. We
can upper bound

∑︁
t∈TS

γt with |Gℓ|. Then, the following inequality is sufficient for maintaining (a):

λ <
γHrH
|Gℓ|

, (1)

where rH is the value of a sparse reward if it were attained at time step H . We provide a more
thorough justification of this choice of λ in Appendix F. Note that λ and the sparse reward can be
both scaled by a constant if λ is otherwise too small to propagate as a reward.

An important feature of our work is the realization that we can make this bound less conservative
through minimal knowledge about the optimal policy and the environment (e.g., knowledge about the
expected task horizon M , or a tighter estimate of the number of subtasks available in an environment
instance). Such reasoning yields a feasible range of values for λ, and these can empirically lead to
faster learning (Section 6.1). At a minimum, reasoning over the value of λ using via (1) provides a
generalizable way to incorporate this technique across a variety of different settings in future work.

We summarize our shaping procedure in Algorithm 1, with an expanded version in Appendix C.

5 Experiments

Experimental Setup. We run our experiments in BabyAI [11], a grid world platform for instruction
following, where an agent has a limited range of view and receives goal instructions such as go
to the red ball or open a blue door. Grid worlds can consist of multiple rooms connected by a
closed/locked door (e.g., the UNLOCK-MAZE environment in Figure 2). The action space A consists
of several navigation primitives (forward, pickup, etc.). Every task instance includes randomly
placed distractor objects that agents can interact with. Rewards in BabyAI are sparse: agents receive
a reward of 1− 0.9 t

H where t is the time step upon succeeding at the high-level goal. If the goal is
not reached, the reward is 0. By default, all rewards are scaled up by a constant factor of 20.

We evaluate our reward shaping framework using Proximal Policy Optimization (PPO) [38], but note
that ELLA is agnostic to the RL algorithm used. We compare to PPO without shaping, as well as to
LEARN, a prior method on language-based reward shaping [17] that provides rewards based on the
predicted relevance of action frequencies in the current trajectory to the current instruction.

We focus on several high- and low-level tasks. Table 1 describes each task with examples. ROOM
levels consist of a single 7 × 7 grid, while MAZE levels contain two such rooms, connected by a
door; agents may need to open and pass through the door multiple times to complete the task. In the
UNLOCK environment, the door is “locked,” requiring the agent to hold a key of the same color as
the door before opening it, introducing significant bottleneck states [30, 40]. We choose six high- and
low-level task pairs in order to differ along three axes: sparsity of the high-level task, similarity of the
low- and high-level tasks, and compositionality of the tasks in G—the number of gℓ ∈ Gℓ relevant to
some g. We use these axes to frame our understanding of how ELLA performs in different situations.

We used a combination of NVIDIA Titan and Tesla T4 GPUs to train our models. We ran 3 seeds for
each of the 3 methods in each environment, with runs taking 1 to 6 days.

Results. Figure 2 presents learning curves for ELLA, LEARN, and PPO (without shaping) across
the six environments. We explain our results in the context of the three axes described above.

→ How does ELLA perform on tasks with different degrees of sparsity?

In both single room (PUTNEXT-ROOM) and two room (PUTNEXT-MAZE) environments, ELLA
induces gains in sample efficiency, using GOTO as Gℓ. Relative gains are larger for the bigger
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Figure 2: Average reward for ELLA and baselines in six environments, with error regions to indicate
standard deviation over three random seeds. Example rollouts in the PUTNEXT-ROOM environment
and UNLOCK-MAZE environment illustrate the final policy learned via ELLA, where the agent
completes relevant low-level subtasks in order to solve the high-level task.

environment because reward signals are more spatially sparse and so spatial subgoals—visiting
relevant objects—help the agent navigate.

Another degree of sparsity comes from bottleneck states: for example, in the UNLOCK environment,
the agent must pick up a key of the corresponding color (the bottleneck) before it can successfully open
a colored door and see reward. Without shaping, random exploration rarely passes such bottlenecks.
However, in this experiment, ELLA rewards picking up keys, via the PICK low-level instruction,
quickly learning to correlate picking up keys of the correct color with successfully unlocking doors,
allowing agents to navigate these bottlenecks and improving sample efficiency.

→ How does ELLA perform when the low-level tasks are similar to the high-level task?

Tasks in the COMBO environment consist of multiple instruction types (e.g., put the red ball next
to the green box, open the green door, and pick up the blue box). The latter instructions require
minimal exploration beyond “going to” an object — such as executing an additional open or pick
up primitive actions. That is, the low-level task GOTO is more similar to this high-level task set
than in the other environments such as PUTNEXT. As a result, ELLA does not increase in sample
efficiency in COMBO. However, it notably does not perform worse than baselines: the exploration it
encourages is not harmful, but is simply not helpful. This is expected as achieving the COMBO tasks
is about as difficult as exploring the relevant GOTO subtasks.

→ How does ELLA perform when the high-level tasks are compositional and diverse?

We test ELLA on OPEN&PICK using two low-level instruction families, OPEN and GOTO. The
instruction open the yellow door and pick up the blue box abstracts over go to the yellow door,
open the yellow door, and go to the blue box. Although learning fρ becomes harder with more
compositional instructions, the boost in sample efficiency provided by ELLA remains.

Similarly, SEQUENCE has a combinatorially-large number of compositional instructions: it requires
two of put next, open, and pick up in the correct order. It has over 1.5 million instructions compared
to the other high-level tasks with 300 to 1500 instructions. Although the exploration problem is very
difficult, we see marginal gains from ELLA; we discuss this further in Section 7.
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fρ improves as decomposition estimates get less noisy. For the
challenging SEQUENCE-MAZE task, ELLA still incentivizes
subtask completion, but the decomposition estimates are noisy
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6 Analyzing ELLA

In this section, we analyze two aspects of ELLA: the effect of different choices for the low-level
reward hyperparameter (Section 6.1), and the performance of the relevance classifier (Section 6.2).

6.1 Effect of the Low-Level Task Reward

The magnitude of the low-level reward λ is a critical hyperparameter. Instead of using ad hoc methods
for tuning λ, Section 4.3 provides guidelines for choosing a reasonable range for λ. To summarize,
we want to pick λ small enough that any unsuccessful trajectory does not receive greater return
than any optimal trajectory. In this section, we examine PUTNEXT-ROOM and evaluate various
λ values determined using the multi-tier assumptions alluded to in Section 4.3. For this task, we
have that H = 128 and |Gℓ| = 36. With no knowledge of the environment or optimal policy, the
loosest bounds for M and |TS| (H and |Gℓ| respectively), as in (1) yield λ = 0.015. With the minimal
assumption that an optimal policy solves the task in under 100 steps, we arrive at λ = 0.05. For 40
steps, we arrive at λ = 0.25. Figure 3 compares learning curves for λ—the smallest being more
conservative and not having a great effect on sample efficiency, the middle values illustrating the
value of rewarding relevant subtasks, and the largest values chosen specifically to demonstrate that
egregious violations of policy invariance can “distract” the agent from the high-level task and lead to
unstable learning. The results in Section 5 use λ=0.25 for PUTNEXT, UNLOCK, and COMBO, and
use λ = 0.5 for OPEN&PICK and SEQUENCE (which have longer horizons H).

6.2 Progress of the Relevance Classifier

The online relevance dataset and classifier provide transparency into the type of guidance that ELLA
provides. Figure 4 focuses on PUTNEXT-MAZE and SEQUENCE-MAZE, and shows two metrics:
the average number of subtasks per high-level instruction in D, which we expect to decrease as
decomposition estimates improve; and the validation accuracy of fρ in classifying a balanced oracle
set of subtask decompositions, which we expect to increase if ELLA learns language abstractions.

For PUTNEXT-MAZE, the number of subtasks per high-level instruction decreases and the relevance
classifier becomes very accurate. This happens as, from Figure 2, the policy improves in terms of
average return. For the SEQUENCE-MAZE task, ELLA has marginal gains in performance compared
to baselines (Figure 2). This is likely due to ELLA incentivizing general subtask completion,
evidenced by the growing average length of the decompositions. However, the large number of
diverse language instructions in SEQUENCE-MAZE makes it difficult to estimate good decompositions
via our deduplication method (as it is uncommon to see the same instruction multiple times). It is
difficult to learn fρ online and offer the most targeted low-level bonuses in this case.
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7 Discussion

We introduce ELLA, a reward shaping approach for guiding exploration based on the principle of
abstraction in language. Our approach incentivizes low-level behaviors without assuming a strict
hierarchy between high- and low-level language, and learns to identify relevant abstractions online.

As noted in Section 2, several other methods exist for addressing sample inefficiency in sparse reward
settings. While we focus on using language as the basis for reward shaping, intrinsic rewards can also
be based on the dynamics of the environment. For example, RIDE [35] provides rewards for actions
that produce significant changes to the state. In Appendix D, we discuss how ELLA can synergize
with such methods to reward different aspects of exploration.

Limitations and Future Work. Our framework requires termination states for each low-level
instruction. This assumption is similar to that made by Jiang et al. [24] and Waytowich et al. [46],
and is weaker than the assumption made by the LEARN baseline of Goyal et al. [17], where full
demonstrations are required. Even so, training accurate termination classifiers can require many
examples—in this work, we used 15K positive and negative pairs for each low-level task. In Appendix
E, we provide an ablation on the data budget for the termination classifier. Our approach is less
feasible in domains where collecting examples of low-level terminating conditions is costly.

Highly compositional and diverse instructions, as in the SEQUENCE-MAZE environment, remain
a challenge. Data augmentation (e.g., GECA [2]) on the online relevance dataset could potentially
improve performance on these large instruction sets. Additional boosts in performance and gener-
alization could emerge from instilling language priors via offline pre-training. More sophisticated
relevance classifiers may also prove helpful: instead of deduplicating and training on D, we could
maintain a belief distribution over whether high- and low-level instructions are relevant conditioned
on trajectories observed online. Furthermore, the relevance classifier could be extended to model the
temporal order of the low-level tasks.

Our approach shows strong performance in several sparse reward task settings with synthetic language.
Extensions to natural language could model a broad spectrum of abstraction beyond two tiers.
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A Experiment Details

Table 2 provides additional reference information about our suite of evaluation tasks.

Table 2: Details of our low- and high-level tasks.

Low-Level Task # Instr. Example

GOTO-ROOM (G1) 36 go to a yellow ball

GOTO-MAZE (G2) 42 go to a red key

OPEN-MAZE (O2) 6 open the green door

PICK-MAZE (P2) 36 pick up a red box

High-Level Task # Instr. Example Visualization Gℓ

PUTNEXT-ROOM 306 put the blue key next to
the yellow ball G1

PUTNEXT-MAZE 1440 put the yellow ball next
to a purple key G2

UNLOCK-MAZE 6 open the green door P2

OPEN&PICK-MAZE 216 open the yellow door
and pick up the grey ball O2, G2

COMBO-MAZE 1266 pick up the green ball G2

SEQUENCE-MAZE >1M
open the grey door after
you put the yellow ball
next to a purple key

G2
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Figure 5: The actor-critic architecture processes an observation and language instruction using a
multimodal encoder based on feature-wise linear modulation (FiLM) [34]. It then uses an LSTM to
recurrently process a history of observations and projects the output onto actor and critic heads.

Figure 6: The relevance classifier consists of a Siamese network that returns a binary prediction of
whether a low-level instruction is relevant to a high-level instruction.

B Training Details

We adapt the PPO implementation from [11] with the default hyperparameters (discount factor of 0.99,
learning rate (via Adam) of 7×10−4, batch size of 2560, minibatch size of 1280, entropy coefficient of
0.01, value loss coefficient of 0.5, clipping-ϵ of 0.2, and generalized advantage estimation parameter
of 0.99). We use the actor-critic architecture from [11] (Figure 5).

B.1 Termination and Relevance Classifiers

The termination classifier hϕ is an adapted version of the architecture in Figure 5 that uses a binary
prediction head instead of the actor and critic heads. Our implementation of hϕ makes predictions
based on single observations; in our BabyAI tasks, final observations are sufficient for evaluating
whether a task has terminated.

To train hϕ, we require positive and negative examples of states at which low-level language instruc-
tions terminate. We use the automated expert built into BabyAI to generate 15K low-level episodes.
For each episode, we use the final observation as a positive example for that episode’s language
instruction and a randomly sampled state from the trajectory as a negative example. Similarly, we
generate 200 episodes for validation data. We augment the datasets with additional negative examples
by sampling 35 mismatching low-level instructions for each terminating observation. We use a batch
size of 2560 and optimize via Adam with a learning rate of 10−4. We train for 5 epochs and use the
iteration that achieves the highest validation accuracy.

We train the relevance classifier fρ online with the architecture described in Figure 6. For an
initialization conducive to deduplication, we initialize fρ to predict that any gℓ is relevant to any g.
To do this, we randomly sample 100 high-level instructions, cross that set with Gℓ, label the pairs
as relevant, and train for 20 epochs. We use a learning rate of 10−4 and a batch size of 10. Online
updates based on the online dataset D involve 3 gradient updates to ρ for every 50 iterations of PPO.
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B.2 LEARN

We will now detail LEARN [17] which we use as a baseline. LEARN rewards trajectories that it
predicts are relevant to a given language instruction. We reimplement LEARN based on an open-
source implementation.2 We collect 15K episodes of BabyAI’s automated expert completing low-level
tasks and process them to create (instruction, action frequency) data. We use this dataset to train the
classifier used in LEARN which predicts whether the action frequencies of the current trajectory are
related to the current instruction. The coefficient on the shaped rewards is a hyperparameter; based
on an informed sweep of values, we set its value to 0.01. We train the classifier for 100 epochs.

An intuition for why LEARN has strong performance in static environments as in [18] but not in our
setting is that the method requires action frequencies to provide a signal about whether the current
trajectory is related to the language instruction. Our environments are dynamic, and so individual
actions are less correlated to language tasks. Additionally, in our setting, the instructions during
RL are high-level instructions which are selected from a different distribution than the low-level
instructions available for training the classifier.

B.3 RIDE

As an additional comparison point to ELLA, we reimplement the RIDE method [35] based on
an open-source implementation.3 RIDE rewards “impactful” changes to the state; we discuss the
method further in Appendix D. We use the same architectures as the original work for the forward
dynamics model, inverse dynamics model, and state embedding model. For comparability with our
implementation of ELLA with PPO, we adapt RIDE to the on-policy setting by updating the dynamics
models once per batch of on-policy rollouts. For hyperparameters, we use the values published in the
code repository for the coefficients on forward dynamics loss and inverse dynamics loss (10 and 0.1
respectively), as well as the published value for learning rate of 10−4. We tune the intrinsic reward
coefficient (which we call λR) within the set {0.1, 0.5, 1}.

C Algorithm (Expanded)

Algorithm 2 breaks down ELLA in detail.

2https://github.com/prasoongoyal/rl-learn
3https://github.com/facebookresearch/impact-driven-exploration
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Algorithm 2 Reward Shaping with ELLA

1: Input: Initial policy parameters θ0, relevance classIfier parameters ρ0, update rate n, low-level
bonus λ, and on-policy RL optimizer OPTIMIZE

2: Initialize D ← {(g : Gℓ) for all g in G}
3: for k = 0, 1, . . . do
4: Collect trajectories Dk = {τi} using πθ

k.
5: for τ ∈ Dk do
6: Set N ← length of τ
7: Set (r′1:N , Ŝ)← SHAPE(τ )
8: if U(τ) > 0 then ▷ If trajectory was successful
9: Set r′N ← NEUTRALIZE(r′1:N )

10: Set D[g]← UPDATEDECOMP(D, Ŝ)
11: Update θk+1 ← OPTIMIZE(r′1:N ).
12: if k is a multiple of n then
13: D′ ← Sample positive and negative examples of relevant pairs (g, gℓ) from D
14: Update ρk+1 ← Optimize cross entropy loss on D′

15:
16: function SHAPE(τ )
17: Set Ŝ← ∅
18: for gℓ ∈ Gℓ do
19: for g, (st, rt) ∈ τ do
20: if hϕ(st, gℓ) = 1 and gℓ ̸∈ Ŝ then ▷ If gℓ has terminated for the first time
21: Update Ŝ← Ŝ ∪ {gℓ} ▷ Record gℓ in the decomposition
22: if fρ(g, gℓ) = 1 then ▷ If gℓ is relevant
23: Set r′t = rt + λ ▷ Apply low-level bonus
24: return (r′1:N , Ŝ)
25:
26: function NEUTRALIZE(r′1:N )
27: Set TS ← {t | 1 ≤ t ≤ N, r′t > 0} ▷ Get time steps at which rewards were shaped
28: return r′N −

∑︁
t∈TS

γt−Nλ ▷ Final reward neutralizes shaped rewards (Section 4.3)
29:
30: function UPDATEDECOMP(D Ŝ))
31: Set S← D[g]
32: if S ∩ Ŝ = ∅ then
33: return Ŝ
34: else
35: return S ∩ Ŝ
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Figure 7: Learning curves for PPO (no shaping), ELLA, RIDE, and ELLA+RIDE in the SEQUENCE-
MAZE task. For PPO, ELLA, and ELLA+RIDE, translucent regions show standard deviation of
return over three random seeds.

D Relation to Intrinsic Motivation

As mentioned in Section 2, curiosity and intrinsic motivation methods use reward shaping to incen-
tivize exploration to novel, diverse, or unpredictable parts of the state space [9, 33, 35, 37]. We adapt
RIDE [35], an intrinsic motivation method, to our setting and discuss one way in which ELLA could
be combined with intrinsic motivation methods.

RIDE rewards actions that produce “impactful” changes to its representation of the state. The
state representation function is learned via a forward dynamics model and inverse dynamics model.
Intuitively, such a representation contains information only relevant to environment features that
the agent can control and features that can have an effect on the agent. RIDE does not consider
goal-conditioning, so we do not include language instructions in the observation provided to RIDE.

RIDE’s intrinsic rewards are equal to the L2 norm of the difference in this state representation
between time steps, scaled by a coefficient λR. We find that λR can have a sizeable effect on the
performance of RIDE, so we tune this hyperparameter as discussed in Section B.3.

We experiment with RIDE in several of the BabyAI tasks, and examine the SEQUENCE-MAZE task
as a case-study below. In Figure 7, we compare RIDE with various values of λ to ELLA. The
SEQUENCE-MAZE task is extremely sparse, and the language instructions are highly diverse. Both
RIDE, which rewards impactful state changes, and ELLA, which rewards completion of low-level
tasks, have a positive effect on sample efficiency. We additionally test how ELLA+RIDE can be
combined; to do this, we simply sum the shaped rewards via ELLA and RIDE at each time step.
For this task, we see that the combination of subtask-based exploration (based on an online-learned
model of language abstractions) and impact-based exploration (based on online-learned dynamics
models) leads to a further increase in sample efficiency.

While these two methods reward different aspects of exploration, and combining them has the
potential to improve upon the individual methods, a limitation of this approach is that we must
resort to ad hoc methods for tuning shaped reward weights in the combined version. The discussion
in Section 4.3 on selecting ELLA’s λ hyperparameter does not apply to reward functions that are
non-sparse, which occurs when additional intrinsic rewards are included.

In SEQUENCE-MAZE, tuning λ and λR for ELLA and RIDE in isolation and then adding the shaped
rewards was effective, but this does not hold for all of the environments. As a representative example
of this case, Figure 7 compares a tuned version of ELLA+RIDE in with λ = 0.1 and λR = 0.05
for the Unlock-Maze task. Here, summing the methods did not significantly outperform either
individual method. We observe similar behavior in the PUTNEXT-ROOM environments. Future work
could examine how best to fuse subtask-based exploration with intrinsic motivation, or how to weigh
different types of intrinsic rewards.

17



Figure 8: Learning curves in the OPEN&PICK-MAZE environment for vanilla PPO and ELLA with
different data budgets for the termination classifier.

Figure 9: An ablation of ELLA’s relevance classifier, where it is replaced with an oracle, in comparison
to ELLA and PPO (no shaping).

E Ablations

Our approach has two learned components: the termination classifier hϕ, which we train offline
using annotated examples of low-level termination states, and the relevance classifier fρ, which is
trained online during RL. To understand how these two modules impact performance, we perform
ablations on the termination classifier (by varying its offline data budget) and the relevance classifier
(by replacing the online version with an oracle).

E.1 Termination Classifier

One of the assumptions of our method is that examples of low-level termination states are inexpensive
to collect. As noted in Section B.1, we train the termination classifier in ELLA with 15K positive and
negative examples, such that it achieves 99% accuracy on a balanced validation set. We perform an
ablation on the termination classifier by training the termination classifier with lower data budgets,
and find that we can reduce the data budget to 2K without affecting ELLA’s performance. However,
with a data budget as low as 500, ELLA’s performance declines. With a data budget of 100, the
termination classifier has an accuracy of only 66%, and the shaped rewards are noisy enough that the
overall learning curve is degenerate.
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E.2 Relevance Classifier

The relevance classifier is trained online using the relevance datasetD. As an ablation for this module,
we replace the relevance classifier with an oracle. To mimic the way that the relevance classifier is
initialized to predict that all low-level tasks are relevant to a high-level instruction, we reward all
low-level tasks for the first 2.5 million frames before switching to the oracle predictions. This initial
phase incentivizes low-level task completion generally, as ELLA does, and is empirically beneficial.

Figure 9 shows learning curves for PPO (no shaping), ELLA, and ELLA with the oracle relevance
classifier. The oracle version slightly outperforms ELLA for three of the four tasks and performs
similarly on the SEQUENCE-MAZE task. This task has over 106 instructions and remains challenging
even with low-level bonuses.

F Proof of Policy Invariance

In this section, we sketch the proof of the policy invariance of our reward transformation. We
begin with the goal-conditioned MDPM = (S,A, T,R,G, γ), where T : S ×A× S → [0, 1] and
R : S × A × S × G → [0, Rmax]. R is sparse. Let M̃ be an augmented MDP (S̃,A, T̃ , R̃,G, γ)
which stores state histories: that is, s̃t = (st, h0:t−1). T̃ : S̃ × A × S̃ → [0, 1] is defined as
T (s̃t, at, s̃t+1) = T (st, a, st+1) · 1[h0:t = (h0:t−1, st)]. R̃ is defined similarly to reflect consistency
between histories. The transformation fromM to M̃ does not affect optimal policies because we are
simply appending history information to the state without affecting the dynamics. We now use M̃
(instead ofM) to show policy invariance with a given shaped MDPM′, as we describe below.

Consider a shaped MDPM′ = (S̃,A, T̃ , R′,G, γ) where R′ : S̃ × A × S̃ → [0, 1] is defined as
R′(s̃t, at, s̃t+1) = R̃(s̃t, at, s̃t+1) + ℓ(s̃t, s̃t+1) where ℓ : S̃ × S̃ → R represents the low-level task
bonuses (or neutralization penalty) going from state s̃t to s̃t+1 as defined in Section 4.3. We first aim
to show that the transformation from M̃ toM′ does not introduce new optimal policies—that is, any
optimal policy inM′ is also optimal in M̃.

Let π̂M̃(s̃) = π∗
M′(s̃) where π∗

M′ is optimal inM′. We will show this policy is also optimal in M̃:
that is, V π̂M̃

M̃ (s̃t) = V ∗
M̃(s̃t) for all st̃. Since R̃ is nonnegative and sparse, we only need to consider

states s̃t at which the value could possibly be positive: those from which the task is solvable in at
most H − t steps, where H is the horizon.

Assume the task is solvable in a minimum of k ≤ H − t steps (using an optimal policy in M̃ ). We
can reason about π̂M̃(s̃) = π∗

M′(s̃) by considering the various ways return could be accumulated in
M′, and which of those cases yields the maximum return.

(1) A policy could solve the task in j ≥ k steps while solving subtasks at timesteps TS, and receive a
discounted future return of

∑︁
t′∈TS;t′≥t γ

t′−tλ+ γj(Rmax −
∑︁

t′∈TS
γt′−(t+j)λ).

(2) A policy could solve only subtasks at timesteps TS and receive a discounted future return of∑︁
t′∈TS;t′≥t γ

t′−tλ.

We can simplify the return in case (1) to γjRmax −
∑︁

t′∈TS;t′<t γ
t′−tλ. The second term does not

depend on actions taken after t; thus, this case is maximized by completing the task in j = k steps.

Note that case (2) always gets smaller return than case (1): the first term,
∑︁

t′∈TS;t′≥t γ
t′−tλ, is the

same as in case (1), and the second term in case (1) is strictly positive when we use the bound on λ

from Section 4.3: that λ < γHRmax

|Gℓ| .

Therefore, the maximum future return is achieved in case (1), specifically by a policy that solves the
task in k steps, and we know that this policy exists. Thus V π̂M̃

M̃ (s̃t) = γkRmax = V ∗
M̃(s̃t), and so

an optimal policy inM′ is also optimal in M̃. In order to show the reverse, we can use similar logic
to show that any optimal policy in M̃ acts optimally inM′ for any state s̃t where the task is solvable
in a minimum of k ≤ H − t steps; actions towards solving the task most quickly are also optimal in
M′. Together, this shows policy invariance between M̃ andM′ for the set of states st̃ where the
task is solvable.
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